

Focuses on the range and its rele	/ance	
NOT trying to provide an exact BAC or	t a previous time	
NOT trying to predict an exact amou	nt of alcohol consumed	
Provides some QA practices for c	onsideration	

Method	Year	Sex	Weight	Height	Age
Widmark	1932	M and F			
Forrest	1986	M and F	x	х	
Watson et al. (Wt, Ht & Age)	1981	M and F	х	х	х
Watson et al. (Wt, Age)	1981	M and F	x		x (M only)
Seidl et al.	2000	M and F	х	x	
Ulrich et al.	1987	М	х	х	
Maudens et al.	2014	M and F	х	х	х

Precise and Accurate Small bias, RMSE ~9 %	 Valid for a wide range of ethnicities
• Siliuli bius, RMSE ~9 %	African American
Valid for wide range of BMIs: Female (17 to 80 kg/m2) Males (17 to 67 kg/m2) Valid for wide range of ages	Hispanic Asian Puerto Rican Caucasian Korean
• 18 - 90 years old	Age, Height, Weight and Sex of individual needed

Sex	VaMin (L/kg)	VdMax (L/kg)	Vd 5 th Percentile (L/kg)	Vd 95 th Percentile (L/kg)
Male (n=582)	0.36	0.86	0.58	0.83
Female (n=884)	0.33	0.78	0.43	0.73
All (n=1466)	0.33	0.86	0.45	0.81
	Maskell et a	f. (2023) J Forensic Sci 68(5	i) 1843-1845.	

BPR 122 - Volume of Distribution	
Use a range for Vd, not an average or single value	
Individualized anthropometric calculations are recommended based on Watson and Maskell	
A generic range may be also be used	
 General 0.45-0.81 L/kg 	
 Male 0.58-0.83 L/kg 	
• Female 0.43-0.73 L/kg	
7 DRUG	

Ethanol Elimination	
 Majority is eliminated via enzyme metabolism 	
Occurs primarily in the liver	
Alcohol dehydrogenase (ADH) is primary enzyme	
 MEOS and catalase also have some activity, especially at higher BACs 	
First pass metabolism (ADH in the stomach)	
Unchanged in urine and expired breath	
♥ DDIIG	
I INVANIANT.COM	480

forensic science service provider	the
Not just an expert opinion	
 Recommends incorporating quality assurance practices routinely applied to other types of serv requests, e.g. 	ice
Documentation	

Written Protocol Considerations	
Definition of a standard drink	
Standard conversion factors/ranges to be used English metric serum/plasma whole blood	
Minimum case information requested	
How volume of distribution will be estimated	
The range to be used for elimination rates	
T DRUG	

Support/Refute Drinking History

Calculate the Vd range (combination of equations 1a, 2a, and 3a):

$$Vd\ (male) = \frac{2.447 - (0.09516 \times a) + (0.1074 \times h) + (0.3362 \times w)}{w \times 0.825} \pm 9.86\%$$

$$Vd\ (male) = \frac{2.447 - (0.09516\times32) + (0.1074\times185) + (0.3362\times104)}{104\times0.825} \pm 9.86\%$$

$$Vd\ (male) = 0.57 - 0.69\ L/k\ g$$

7 DRUG

67

Support/Refute Drinking History

Calculate the dose of alcohol from 2 pints of Brand X beer (equation 7):

$$D = V \times C \times \rho \times m$$

$$D = 32oz \times 4.3 \frac{mL}{100mL} \times 0.789 \frac{g}{mL} \times 29.6 \frac{mL}{oz}$$

-60

D = 32 g alcohol in 2 pints of Brand X

T DRUG

68

Support/Refute Drinking History

Calculate the maximum AC from a given dose (equation 8):

$$\text{AC}_{drink(s)} = \frac{D}{Vd \times w \times 10 \ \frac{dL}{L}}$$

$$\text{AC}_{drink(s)} = \frac{32g}{(0.57 - 0.69)\frac{L}{kg} \times 104kg \times 10\frac{dL}{L}}$$

 ${\rm AC}_{drink(s)} = 0.045 \, - \, 0.054 \, g/d \, L$

T DRUG -

Retrograde Extrapolation

Calculate AC range at the time of incident if the subject were postabsorptive (equation 9):

$$AC_{inc} \, = \, AC_{test} + \, (\beta \times T)$$

$$AC_{inc} = 0.082 \frac{g}{dL} + \left(\frac{\left(0.010 - 0.025\right) \frac{g}{dL}}{hour} \times 1.5 \; hours \right)$$

$$AC_{inc} = 0.097 - 0.120 \frac{g}{dL}$$

7 DRUG

73

Retrograde Extrapolation

Calculate the dose of alcohol from 1 shot tequila (equation 7):

$$D=V\times C\times \rho\times m$$

$$D = 1.5oz \times 40 \frac{mL}{100mL} \times 0.789 \frac{g}{mL} \times 29.6 \frac{mL}{oz}$$

74

D = 14 g alcohol in a shot of tequila

T DRUG -

74

Retrograde Extrapolation

Calculate the Vd range (combination of equations 1b, 2b, and 3b):

$$Vd\ (female) = \frac{-2.097 + (0.1069 \times h) + (0.2466 \times w)}{w\ x\ 0.838} \pm 15\%$$

$$Vd\ (female) = \frac{-2.097 + (0.1069 \times 173) + (0.2466 \times 73)}{73\ x\ 0.838} \pm 15\%$$

Vd (female) = 0.48 - 0.64 L/kg

T DRUG —

Retrograde Extrapolation

Calculate the maximum AC from a given dose (equation 8):

$$AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$$

$$\mathrm{AC}_{drink(s)} = \frac{14g}{(0.48-0.64)\frac{L}{kg} \times 104kg \times 10} \frac{dL}{L}$$

$$AC_{drink(s)} = 0.030 - 0.040 g/d L$$

T DRUG

76

Retrograde Extrapolation

Adjust the AC to remove the contribution from the last shot of tequila (equation 10):

 $Adjusted\ AC_{inc} = AC_{inc} - AC_{drink(s)}$ $Adjusted\ AC_{inc} = AC_{inc} - AC_{drink(s)}$

Adjusted AC_{inc} = 0.097 - 0.040 Adjusted $AC_{inc} = 0.120 - 0.030$

Adjusted $AC_{inc} = 0.057 \text{ g/dL}$ Adjusted $AC_{inc} = 0.090 \text{ g/dL}$

T DRUG 77

77

T DRUG

Minimal Case History

Calculate AC range at the time of incident if the subject were postabsorptive (equation 9):

$$AC_{inc} \, = \, AC_{test} + \, (\beta \times T)$$

$$AC_{inc} = 0.075 \frac{g}{dL} + \left(\frac{(0.010 - 0.025) \frac{g}{dL}}{hour} \times 2 \ hours \right)$$

$$AC_{inc} = 0.095 - 0.125 \frac{g}{dL}$$

▼ DRUG

82

Minimal Case History

Calculate the maximum AC from a standard drink (equation 8):

$$AC_{drink(s)} = \frac{D}{Vd \times w \times 10 \frac{dL}{L}}$$

$$\text{AC}_{drink(s)} = \frac{14g}{(0.43 - 0.73) \frac{L}{kg} \times 73kg \times 10 \frac{dL}{L}}$$

$$AC_{drink(s)} = 0.026 - 0.045 g/d L$$

7 DRUG

83

Minimal Case History

Adjust the AC to remove the number of drinks that would have to be unabsorbed to get below the legal limit (equation 10):

Adjusted ACinc = ACinc - ACdrink(s)

Estimated AC @ 1:00am	0.010 rate		0.025 ra	ate
Post absorptive (ACinc)	0.095	0.095	0.125	0.125
ACdrink(s) (Vd 0.43-0.73 L/kg)	0.045	0.026	0.045	0.026
-1 drink unabsorbed	0.050	0.069	0.080	0.099
-2 drinks unabsorbed			0.035	0.073

T DRUG -

